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1 Introduction

FORTRAN remains the language of choice for many complex numerical algorithms.
The motivations behind the development of the language help to explain its longevity.
Researchers early in the computer revolution were confined to writing numerical codes
in assembly language. This practice required detailed knowledge of the algorithm as
well as assembler and computer architecture specifics such as number of registers,
memory structure, etc. The development of the FORTRAN language provided a
watermark for both programming language and compiler designers. Advances in
compiler design provided compiler writers the first opportunity to take a program
written in a high-level language and generate assembly code of a caliber often exceed-
ing hand-coded assembly. Codes began to be written in FORTRAN, at which point
the computer specifics could be left to the compiler writers.

FORTRAN remains popular today because it is highly efficient. The time required
to execute many of these numerical codes is most often dominated by one or two small
loops which perform the vast majority of the overall work of the algorithm. It is not
uncommon to find one or two loops in these codes which consume upwards of seventy
percent of the overall execution time. FORTRAN is very efficient at processing these
loops. The simplicity of the language’s loop structure is one of the main factors
allowing for highly-optimized compiler-generated code. These loops can be executed
with great speed with little overhead being incurred due to language constructs.

While it is very efficient at number crunching, FORTRAN is somewhat lacking
when it comes to file input and output. Often associated with these numerical codes
are very large input files or data decks. The problem of interest for this research team
provides an excellent example. This team is particularly involved with manufacturing
simulation dealing especially with composite materials. To this end, two algorithms
have been developed. One is a new variant of the control volume finite element
algorithm to simulate the isothermal flow of resin in the resin transfer molding (RTM)
composite manufacturing process [1]. The other is an implicit time-dependent pure
finite element methodology for RTM flow simulation [2]. The majority of the work in
both algorithms is performed in a few small FORTRAN loops. These codes perform
very well on the new pipelined architecture found in the Silicon Graphics Power
Challenge computer. However, parsing the input files is annoyingly slow and at times
convoluted.

This speed can be increased by taking input and output tasks away from languages
like FORTRAN, which are limited in this area, and moving them to more robust
byte-stream languages and libraries like those found and written in C. Furthermore,
formalizing on one simple yet robust input format will also allow for faster reading.
Combining regular expressions and a context-free grammar describing the structure
of the input file makes it possible to create a deterministic finite automata for pattern
recognition and a parser to interpret the structure of the file. Parsing of the input
file is then bounded by O(n), where n is the size of the input deck. The techniques




mentioned previously were implemented to reduce the time required to parse finite
element input files. This paper describes the implementation steps and the overall
results of using this parsing technique.

2 Elements of fast parsing

There are several key issues which must be addressed in the course of defining a
parsing strategy. What are the basic items in the data file? What is the basic
structure of the data file? These issues are not unlike those historically encountered
in the development of parsing strategies for compilers. They involve:

o Defining the basic units of the data file. In this case, these items include in-
stances of real numbers, integers, and character strings.

e Formalizing a description of the format of the data. This is done by defining a
grammar for the input data.

e Establishing what to do with the data as they are being read. This requires
establishing data structures and actions.

Often the best way to overcome a multifaceted problem such as this is to use the
divide and conquer approach. This approach calls for us to solve each of these parts
of the main problem separately. The methods are described in the following sections.

2.1 Lexical analysis

Lexical analysis is the process of identifying the basic units of the data file. This
process is accomplished by scanning the input stream, recognizing patterns in the
data, and converting these patterns into tokens. These tokens are basically some
classification for the patterns. For example, the sequence of characters “program”
forms a string token and the sequence of numbers 531 forms a number token.
These classifications are arbitrary and must be defined by the user.

The process of building a pattern recognizer requires the construction of a tran-
sition diagram referred to as a finite automaton. These finite automatons are state-
transition diagrams. They tell the controlling algorithm how to act based on the
current state it is in and on the next character in the input stream. The finite au-
tomaton in figure 1 can accept a string with zero or more z characters ending with
the sequence yz.

A finite automaton can be either deterministic or nondeterministic. Nondeter-
ministic automatons allow more than one transition out of a state on the same input
symbol whereas deterministic automatons do not. There is a space-time tradeoff be-
tween the two approaches. In general, deterministic finite automata allow for faster
recognizers but require more space to define.
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Figure 1: Finite automaton recognizing a string with zero or more z characters ending
with the character sequence yz.

Several tools have been created to make the task of constructing a lexical analyzer
easier. One such tool widely available on UNIX machines is Lex. Lex accepts pattern
definitions and generates a deterministic finite automaton for the input stream. Lex
users may also supply code fragments to complete various operations once a token is
recognized. For example, a code fragment may be written which converts all strings
to their upper-case equivalents.

Specification of patterns is accomplished through the use of regular expressions.
UNIX regular expressions have existed for some time and are used in a variety of
operating system utilities such as awk, vi, and sed. Regular expressions provide a
robust method for specifying patterns in data. Indeed, these regular expressions are
mathematical objects, and as such, may consist of the empty set, a single character,
unions and concatenations of regular expressions, or repetitions of regular expres-
sions [3]. Some of the basic symbols used in defining regular expressions in Lex are
listed in table 1. * For example, the regular expression [+-]7[0-9]+ can match
-241, +023, 51, etc. Finite element input files contain several entities that must be

Table 1: Some regular expression operators of Lex.

Symbol | Meaning |
. Matches any character up to, but not including, a new line.
(1 Matches any of the characters listed.
? The previous regular expression is optional.
* Zero or more repetitions.
+ One or more repetitions.
| One or the other.
O Grouping of expressions.

recognizable. They contain character strings which signify which part of the file is
currently being read (nodes, elements, etc). They contain both integer and real num-
bers. They also contain delimiter characters, such as tabs or spaces, which segregate
the items. They also often contain comments. All of these, with the exception of real

*A complete listing of regular expression operators may be found in [3].




numbers, are fairly easy to define with regular expressions. FORTRAN real numbers
are somewhat more involved and require several regular expressions to describe all the
possible formats they may take. Table 2 lists the regular expressions used to define
some of the items encountered in finite element mesh files.

Table 2: Regular expressions for items in finite element mesh files.

| Token | Regular expression | Example
comment | "*'" * * File:mesh.data
string [a-zA-Z]+ nodes
integer | [-+]17[0-9]+ +641
real [-+]?"."[0-9]+ .341
[-+17[0-9]+"." -423.
[-+]17([0-9])+"."[0-9]+ +35.501
[-+17([0-9])*"."([0-9])*[eE] [-+]7([0-9])+ | 9.34e-5
[-+17([0-91)*[eE] [-+]17([0-9])+ 34e8

2.1.1 Lexical analysis with Lex

The Lex specification file is given in appendix A. The beginning of the file lists several
libraries that need to be included for various purposes such as string manipulation
and input/output operations. Also listed are definitions for various local and global
variables and function prototypes. Following this is the list of regular expressions for
the finite element data file. This section follows the %} and ends with the first %%.

White space is defined as any space, tab, or newline character. The definitions
for letters and digits are straightforward. Integers have an optional sign followed by
one or more digits. There are various definitions for real numbers to correspond with
all allowed FORTRAN real formats. Strings are defined to be sequences of letters.
Finally, a comment is defined to start with an * and comprise all characters until the -
end of the line.

Next comes a list of actions that are to be performed when the regular expressions
are matched. For integers, the string of characters is converted to an integer whose
value is stored for the parser to use. The token integer is returned to the parser.
For real numbers, a similar action is taken with a real token being returned to the
parser. White space and comments result in no actions. All strings are first converted
to upper case. A function is then called which scans a list of keywords, and if the
string is a reserved word or keyword, returns a token for the keyword. Finally, any
unmatched characters result in an error message being displayed.

Following the second %% and continuing until the end of the file are the supporting
functions. These functions perform various tasks such as converting strings from lower
to upper case and checking a string to see if it is a keyword.

4




2.2 Syntax analysis and parsing

The input deck for the executing code must adhere to some rigid format to facilitate
quick scanning. This format, or syntax, is best defined through the use of a context-
free grammar, or grammar for short. A grammar naturally describes the syntactical
structure of a language. Grammars can be very complex because of this. Indeed,
they are most often used to define elaborate hierarchical and recursive constructs
in programming languages. In this case, the format for an input deck, as well as
the defining grammar, can be very simple. Context-free grammars consist of four
components:

1. A set of tokens, or terminal symbols. These are the items recognized and
returned by the lexical analyzer.

2. A set of nonterminals.

3. A set of productions. These productions consist of a nonterminal on the left
side, an arrow, and then a sequence of nonterminals or tokens on the right side.

4. A nonterminal designated as the start symbol.

Historically grammars are specified by listing their productions with the start
symbol listed first. Productions define the valid orderings of tokens in the file. Digits
and boldface strings such as nodes are considered to be terminals. Italicized names
are nonterminals and any nonitalicized names or symbols are tokens. If the nonter-
minal on the left has more than one production, the right sides may be grouped and
separated with the | symbol.

For example, the grammar below may derive one item of the set of domestic
animals {dog, cat} or one item of the set of wild animals {racoon, wolverine, bear}.

animals — domestic | wild
domestic — dog | cat
wild — racoon | wolverine | bear

The structure of the finite element input deck can be of a simplistic nature. For
the isothermal filling algorithm, the vast majority of the file will be entries defining
the grid points of the mesh and corresponding connectivity of these points. These
entries are often referred to as nodes and elements, respectively. Other entries, such
as material descriptors, may also be required. General purpose structural analysis
programs have more functionality and usually support many data descriptors. For
example, NASTRAN * supports over 100 data card descriptors [4]. Since we are more
concerned with flow simulations, we focus on the two descriptors comprising the bulk
of our data files. However, parser construction through grammar specification is the
same for both large and small input formats.

*NASTRAN is a registered trademark of the National Aeronautics and Space Administration.
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A grid point, or node, in a finite element mesh is defined by three points: the z,
y, and z locations in 3-D space. Another identifier, the node number, is also required
to later define connectivity. To specify a node we therefore need a sequence of four
tokens:

integer real real real

to denote the node’s identification number and its z, y, and z values, respectively.
Elements, which in this case are triangular with material and thickness data, can be
described with a sequence of six tokens:

integer integer real integer integer integer

to denote the element number, material identifier, thickness of the element, and nodes
which comprise the element, respectively. Defining two more terminal symbols will
also be necessary for our grammar. They will make it more readable and solve the
problems which would arise by adding more data cards with similar defining sequences
of numbers. Therefore, we also define the tokens nodes and elements. The definition
of elements refers only to triangular elements. Higher order elements and mixed
element types which may require more data variables can easily be incorporated by
creating new tokens followed by the required sequences of integers and reals.

Grammars, in their own right, do not actually parse a file. Grammars are used
to define the way in which the parsing machine is constructed. Parsing is actually
done in a linear fashion by constantly processing tokens from the lexical analyzer and
determining if the token stream can be derived from the grammar. There are several
parsing strategies, with each one having several advantages and disadvantages. Often
which strategy to implement depends on characteristics of the defining grammar.
There are several areas of concern which arise depending on which type of parser is
being used. Some parsers do not accept left recursive grammars. A left recursive
grammar, such as A — A+ B would not be acceptable to a top-down parser because
it would lead to an infinite loop as A continually derives A. Some parsers cannot
work with ambiguous grammars. The grammar

E—-E+E|E+E|a

is ambiguous because it can derive the string a + a * a in two different ways:

E—-E+F E—-ExFE
—a+ F —E+ExFE
—a+ExFE —a+ ExE
—a+axF —a+axFk
—a-+axa —a-+axa




Irregardless, the process of building a parser can be a laborious one requiring the
compiler writer to compute many complicated sets and tables. A complete discussion
of parsing and syntax analysis is beyond the scope of this paper and left to the
reader.”* Special computer programs, called parser generators, have been written to
mitigate some of this complexity. They take grammars as input and construct the
set of parsing action tables. These utilities are very helpful in instances where the
defining grammar may change or be augmented, as is true in this case. The most
widely available parser generator is Yacc (yet another compiler-compiler), and it is
used to generate the parser for this grammar.

The parser generated with Yacc is termed an LALR parser. The “LA” stands for
lookahead and the “LR” for left-to-right scanning of the input, rightmost derivation
in reverse. This parser has four actions it can perform: accept the input, indicate
an error, shift, or reduce. The input is accepted if it can be derived from the gram-
mar, otherwise an error is reported. Shifts are the most common operation and are
performed while the input is being parsed. A reduction is performed when the right
hand side of a grammar production is recognized. Consider a simple grammar with
one production S — a b ¢ and an input stream abc. The parsing table for this gram-
mar with states and actions is shown in table 3. The actions taken by the parser are
shown in table 4. The $ represents the end of input.

Table 3: Parsing table.
Table 4: Parser actions.

state action goto
a b c $ S | stack | input | parser action
0 |s2 1 0 abc$ | shift 2
1 accept 0a2 bc$ shift 3
2 s3 0a2b3 c$ shift 4
2 s4 0a2b3cd | $ reduce S—abc
4 reduce 051 $ accept

We start in state 0 with an a as the next symbol in the input stream. According to
the table, state 2 is shifted onto a run-time stack. In state 2 with b the next symbol,
the action is to shift state 3. State 4 is then shifted onto the stack and all data have
been shifted. In state 4 with the end of file marker we reduce by the rule S —+a b c.
This pops three states off the stack, leaving us in state 0 with the symbol S on the
stack. We then go to state 1 with the end of file marker still the next symbol in the
input stream. At this point, the parser accepts the input.

LALR parsers can accept ambiguous grammars. Yacc provides mechanisms such
as precedence operators to preclude ambiguity. During its final stage of processing,
Yacc will actually report the number of ambiguities it encountered and could not

*For additional information regarding issues in parsing and syntax analysis, see [5].




resolve. These errors are either shift-reduce errors or reduce-reduce errors. A shift-
reduce error occurs when the parser has reached a state where it could either shift
the next input symbol or reduce a right hand side. Reduce-reduce errors occur when
the parser reaches a state where two possible reductions could be performed.

The grammar for the finite element input files need not be as involved as those for
some programming languages. Accordingly, rather than trying to use disambiguating
rules, the grammar should be designed so that there are no ambiguous rules. It makes
sense to group similar data items in the file. The best way to do this is to partition
the data file into logical blocks of similar items. The data is grouped by using the
nodes and elements tokens. These tokens inform the parser of what to expect next
in the file and allow the data to be grouped in a manner such as:

NODES

ELEMENTS

Given all of the above information, figure 2 lists a first try at specifying a grammar
for the nodes and elements of the finite element input file.

startpoint —  items

| startpoint items

items — mnodes node.list
| elements element._list

node_list — integer real real real
|  integer real real real node_list
element_list — integer integer real integer integer integer

|

integer integer real integer integer integer element_list

Figure 2: A possible grammar specification.

2.2.1 Structuring the grammar for Yacc

The grammar given in figure 2 is easy to understand. The start symbol is called
startpoint. This nonterminal can derive one item, or many items by recursively calling
itself. This is a left-recursive rule. Notice also that right-recursive rules are used in
figure 2 to specify the list of nodes and list of elements. LALR parsers can accept
grammars which have both left and right recursive rules. These rule structures are
often used for specifying lists. The list of items includes nodes and elements. The list
of nodes and elements specify the sequence of tokens that should be encountered. The
lists of nodes and elements continue as long as a valid sequence of real and integer
tokens are read.




While both left and right recursion may be employed, there is a significant reason
for choosing left recursion. The reason mainly involves how Yacc builds the parsing
engine. At first sight, the right-recursive rule would seem to be more intuitive. The
input file is read top-down, left to right. Once the nodes token is read, the integer
token should follow as well as three real tokens. The process then resumes with a
new list of nodes.

However, since this rule is right recursive, the stack maintained by Yacc will
continually grow until the elements token is reached. It is only at this point that
the rule will be reduced and items will be popped from the stack. Large files will
result in a stack that grows very quickly. For example, a file approximately 3.7 Mbytes
in size was parsed using Yacc and the grammar in figure 2. As reported from the
Silicon Graphics IRIX operating system utility osview, this parsing process required
31 Mbytes to be allocated from free memory space.

In contrast, left recursive rules limit stack size by reducing right hand sides more
quickly. The states are popped from the stack during these reductions and the stack
is kept to a small size. With this in mind, the grammar of figure 2 was reconstructed
and is shown in figure 3. This process only required 1 Mbyte to parse with the final
outcome the same as the right-recursive parse.

startpoint —  items

| startpoint items

items — mnodes node_list
| elements element_list

node_list — integer real real real
| node_list integer real real real
element_list — integer integer real integer integer integer

|

element_list integer integer real integer integer integer

Figure 3: Restructured grammar using left-recursive rules.

The left-recursive rules allow the first production of the node_list nonterminal to
be reduced for the first node encountered in the file. All subsequent nodes in the
file are then reduced by the second node_list right hand side. In this fashion, there
will never be more than four items shifted onto the stack between reductions. In
constrast with the first parser, the parser generated from the left-recursive grammar
consumes very little memory. The state transitions used by the Yacc parser engine
are available for analysis. Using the command yacc -d filename produces a file named
“y.output” containing the transition rules. Careful study of “y.output” files produced
with the right and left-recursive rules will clearly demonstrate the differences in the
parser engines.




2.2.2 Parsing with Yacc

The Yacc specification file is given in appendix B. The beginning of the file is similar
to the Lex specification where included library routines are listed. Following this a
list which defines the tokens. Some tokens have attributes associated with them. For
instance, the token integer should have some integer value associated with it. This
association of tokens with actual data is accomplished using the C structure feature.
The lexical analyzer will set the integer attribute in a code fragment upon encoun-
tering an integer, the real attribute upon encountering a real, etc. This structure is
created with the %union statement. The variable yylval assumes this structure. Ac-
cordingly, upon encountering an integer in the input data, the lexical analyzer can set
yylval.integer equal to the actual encountered integer. The start point is defined
to be startpoint.

Enclosed by the %% symbols is the context-free grammar in Yacc syntax. The
grammar is identical to that given in figure 3 with a minor difference. Actions are
placed inside {} symbols. As an example, consider the node_list productions. The
actions involve actually storing the data encountered during the parse into some
structure for later use. In this case, the numbers being read are stored into arrays.
The $ allows access to the values that were assigned in the lexical analysis section.
In the statement

node_list : INTEGER REAL REAL REAL

the actual integer value associated with the integer token may be accessed by using
the $1 operator since it is the first token to the right of the colon. The real values
associated with the real tokens are accessible by using $2, $3, and $4. The correction
by -1 for the arrays is attributable to the difference in the way C and FORTRAN
handle array storage. Following the second %% to the end of the file are various

supporting functions.

3 Combining the parts

The Lex and Yacc specifications have been described in some detail. The only re-
maining point of discussion is how to properly tie these items together. Since most of
the computing is done in FORTRAN, the driver for the parser is also given in FOR-
TRAN. The code for this routine is listed in appendix C. C and FORTRAN code
can easily be combined. The main concern is making sure that the variable types
match between the two languages. Appendix D lists the header file for the Lex and
Yacc routines which defines the C structure to match variables in the FORTRAN
structure.

To compile the Yacc specification file, issue the command yacc -d filename. This
creates a file named y.tab.c. The -d option instructs Yacc to generate a file named
y.tab.h containing token definitions which must be included into the Lex specification
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file. To compile the Lex specification file, issue the command lez filename. This
produces a C file named lez.yy.c. The files lez.yy.c and y.tab.c must be compiled
separately from the FORTRAN files by issuing the command cc -c lez.yy.c y.tab.c.
This will generate files which can be linked and loaded by the FORTRAN compiler.
The final command to create the executable is then f77 y.tab.o lez.yy.o driver.f.

4 Results

This section lists some parsing time results for the LALR parser generated with Lex
and Yacc and also some comparisons to a parsing system written in FORTRAN. The
FORTRAN parsing technique required one line to be read at a time from the input
file. This line was then searched by a routine which identified tokens in the line.

Two files were used as test cases. The first was a mesh of a bridge truss having
5,325 nodes, 10,898 triangular elements, and 865,511 total characters. The second
file was the mesh of a component of the RAH-64 Comanche helicopter. This mesh
comprised 23,348 nodes, 45,990 triangular elements, and 3,697,579 total characters.

Parse times were averaged over three trials. The trials were performed on a Silicon
Graphics Computer Systems Power Challenge 75-MHz R8000 processor. Table 5 lists
the results.

Table 5: Results of parsing trials.

Parse time (in seconds)
FORTRAN | LALR (Lex & Yacc)
Bridge truss (845 Kbytes) 43.98 2.83
RAH-64 Comanche (3.69 Mbytes) 185.78 11.79

File (size)

Table 5 shows some rather dramatic results. The parser generated by Lex and Yacc
was able to parse the input files approximately 15 times faster than the corresponding
FORTRAN parser. The multiple scanning used by the FORTRAN parsing method
severely degrades that parser’s performance.

5 Conclusion

Lex and Yacc provide effective tools for implementing LALR parsers quickly and
easily. These tools promote parser expandability and impart a logical nature on the
entire parser construction process. Most importantly, the LALR parsers generated
by Lex and Yacc are extremely efficient. This efficiency easily supersedes that of
many other more contrived methods. This reduced parse time is notable and worth
pursuing in virtually all data file parsing tasks.
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A Lex specification

W
. /*
File: lex.spec
Description:
. Specify the lexical analysis component for parsing.

Fortran real numbers may be represented in one of the
three following formats:

sww.ff Basic real comstant.
sww.ffEsee Basic real constant followed by real exponent.
swwEsee  Integer constant followed by real exponent.

The following real number regular expressions apply:

realconstl -> -.5 .62 +.123
realconst2 -> -5. +69. 0.
realconst3 -> -6.2 +9.3 82.3
realconst -> Any of the above comstructs.
realconstwexp -> -.3E1 +9.12E-4
intconstwexp -> -3E-5 9E4
External global variables:
meshdata_ - Structure to hold data read. Used for summary printout.
startTime - Time parsing began. Used for summary printout.
numberYaccErrors - Number of parsing errors discovered in Yacc.
Local global variables:
keywordName -~ Holds the symbolic name of keyword found.
numberLexErrors - Counter for number of lexical errors.
Functions (functions appear in alphabetical order):
ConvertToUpperCase -~ Convert a string to upper case.
IsKeyword - True if a lexeme is a keyword, false otherwvise.
ReportError - Show error message when a lexical error is discovered.
yywrap - Report parsing statistics and perform last steps before the end
of parsing.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <limits.h>
#include <sys/types.h>
#include <time.h>
#include "parser.h"
#include "y.tab.h"

/* External variables: */
extern MeshStruct meshdata_;
extern time_t startTime;
extern int numberYaccErrors;

/* Local variables: */

static int keywordName;
static int numberLexErrors = 0;

- typedef enum {false, true, FALSE=0, TRUE} boolean;

/* Function prototypes: */
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static void ConvertToUpperCase();
static boolean IsKeyword();
static void ReportError();

int yywrap();

A

ws [ \t\n]

letter [a-zA-Z]

digit [0-93

integer [~+17{digit}+
realconstl [-+]7"."{digit}+

realconst2 [-+17{digit}+"."
realconst3 [-+17({digit})+"."{digit}+

realconst {realconsti}|{realconst2}]|{realconst3}
realconstwexp [-+]7({digit})*"."({digit})*[eE] [-+]7({digit})+
intconstwexp [-+17({digit})*[eE] [-+17({digit})+

real {realconst}|{realconstwexp}|{intconstwexp}
string {letter}+
comment R
wh
{integer} { yylval.integer = atoi(yytext); return INTEGER; }
{reall} { sscanf(yytext, "/41f", &yylval.real); return REAL; }
{ws} { /* Consume white space without action. */ }
{string} { ConvertToUpperCase();
if (IsKeyword())
return keywordName;
else {
ReportError();
return REAL;
}
}
{comment} { /% Take no action for comments. */ }

{ ReportError();
/* Return an arbitrary token to let the parser continue. */
return REAL;
}

W
/* Define an array containing the list of keywords. */

static struct keywordsStruct {

char *name;

int symbolicName;

} keywords[] = {
“NODES", NODES,
"ELEMENTS", ELEMENTS,
(char *)NULL, 0O
};

/*
ConvertToUpperCase
Purpose:
Convert all letters in yytext to lower case.
Global variables:
yytext - The lexeme matched from the regular expression.
All characters in yytext are converted to upper case.
yyleng - The length of the lexeme.
Local variables:
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i - Counter.

static void ConvertToUpperCase()
{

int i;

for (i=0; i<yyleng; i++)
yytext[i] = toupper(yytext[il);

} /* end ConvertToUpperCase */

/*
IsKeyword
Purpose:
Return true if the lexeme is a keyword, false otherwise.
Global variables:
yytext - The lexeme matched from the regular expression.
yyleng - The length of the lexeme.
Local variables:
ptr - Pointer to keyword list.
Returned value:
found - False if the lexeme is a keyword, true otherwise.

*/

static boolean IsKeyword()
{
boolean found = false;
struct keywordsStruct *ptr = keywords;

ptr = keywords;
vhile ((!found) && (ptr->name != NULL)) {
if (stroemp(yytext, ptr->name, yyleng) == 0) {
found = true;
keywordName = ptr->symbolicName;
¥
++ptr;

}

return(found);

} /* end IsKeyword */

/*
ReportError
Purpose:
Report when a lexical analysis error was discovered (no pattern matching
rule was found) and increment the error counter.
Global variables:
numberLexErrors - Counter for the number of lexical errors discovered.
yylineno - Parser current line number.
yytext - The matched pattern.
*/

static void ReportError()

{

++numberLexErrors;
printf("Invalid item found at or near line %d: ¥%s\n", yylineno, yytext);

} /* end ReportError */
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/%
yywrap

Purpose:
Perform wrap up on end-of-file. Currently this prints statistics

about the number of nodes, elements, etc.

Statistics are only printed if no errors were found.
Local variables:

endTime - Time at which this function is called.

Global variables:
numberLexErrors - Number errors encountered during lexical analysis.
numberYaccErrors - Number errors encountered during parsing.
startTime - Time at which parsing began.
meshdata_ - The structure to store nodes, elements, etc.

Returned values:
This function always returns a 1 to tell parsing to stop.

*/
int yywrap()
{
time_t endTime;
printf("\nRead Statistics:\n\n");
if (numberLexErrors + numberYaccErrors == 0) {

endTime = time(NULL);
printf("Elapsed parse\n");
© printf(" time (sec): %6d\n", endTime ~ startTime);

printf("Nodes: %8d\n", meshdata_.numberNodes);
printf ("Elements: %8d\n", meshdata_.numberElements);
}

else

printf("Read not completed because of error conditions.\n");

/* yywrap should return 1 to indicate successful completion
and to tell yyparse to stop parsing. */

return(l);

} /* end yywrap */
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B Yacc specification

A8
/*

File: yacc.spec
Description:
Specify the grammar and the supporting functions for parsing a
finite element input file.
External global variables:
yylineno - The current line number of the parse.
meshdata_ - Structure to hold the data read.
Global variables:
startTime - Time parsing began.
numberYaccErrors - Number of errors encountered during parsing.
Functions (functions appear in alphabetical order):
InitGlobalVars ~ Initialize all global variables.
InstallElement - Process element data.
InstallNode - Process node data.

readmesh_ - The main driver parser driver. This is called from a Fortran

module (the reason for the trailing _).
yyerror -~ Performs actions when errors are encountered.

*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <time.h>
#include "parser.h"

/* External global variables: */

extern int yylineno;
extern MeshStruct meshdata_;

/* Global variables: */

int numberYaccErrors;
time_t startTime;

/* Function prototypes: */

static void InitGlobalVars();
static void InstallElement();
static void InstallNode();
void readmesh_();

void yyerror();

A

Junion {
double real;
int integer;
char string[MAX_LINE_LENGTH];
}

%token NODES

%token ELEMENTS

%token <integer> INTEGER
%token <real> REAL
/token <string> STRING

17




%start startpoint
Wh

startpoint : items
| startpoint items

items : NODES node_list
| ELEMENTS element_list

»

element_list : INTEGER INTEGER REAL INTEGER INTEGER INTEGER {
InstallElement ($1, $4, $5, $6);

}
| element_list INTEGER INTEGER REAL INTEGER INTEGER INTEGER {

InstallElement($2, $5, $6, $7);
}

node_list : INTEGER REAL REAL REAL {
InstallNode($1, $2, $3, $4);
}
| node_list INTEGER REAL REAL REAL {
InstallNode($2, $3, $4, $5);
}

wh

InitGlobalVars

Purpose:
Initialize all global variables.

Global variables:
numberYaccErrors - Counts number of parsing errors discovered.
startTime - Record start time of parse.
meshdata_.numberNodes ~ The number of nodes encountered.
meshdata_.numberElements -~ The number of elements encountered.

*/

static void InitGlobalVars()
{

numberYaccErrors = 0;
startTime = time(NULL);
meshdata_.numberNodes = 0;
meshdata_.numberElements = 0;

} /* end InitGlobalVars */

InstallElement
Purpose:
Add an element to the storage structure.
Global variables:
meshdata_ - Structure to hold data read.
Local variables:
elementID - The element number.
nodel, node2, node3 - Nodes comprising the element.

_*/

static void InstallElement(elementID, nodel, node2, node3)
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int elementlID;
int nodel, node2, node3;

{
meshdata_.nodel[elementID-1] = nodel;
meshdata_.node2[elementID-1] = node2;

meshdata_.node3[elementID-1] = node3;
++meshdata_.numberElements;

} /* end InstallElement */

InstallNode
Purpose:
Add a node to the storage structure.
Global variables:
meshdata_ - Structure to hold data read.
Local variables:
nodeID ~ The node identification number.
X, ¥, 2z - The nodes x, y, and z coordinates.

*/
static void InstallNode(nodelID, x, y, z)
int nodelD;
float x, y, 2z;
{

meshdata_.x[nodeID-1] = x;
meshdata_.y[nodeID-1] = y;
meshdata_.z[nodeID~1] z;
++meshdata_.numberNodes;

i

} /* end InstallNode */

readmesh_

Purpose:
Server as the main entry point for parsing. This function is called
by the Fortran driver routine.

*/

void readmesh_()
{

InitGlobalVars();
yyparse();
}

yyerror
Purpose:

Report parser errors. This routine is called by yyparse.
Local variables:

s - Error message passed in by the parser.

*/

void yyerror(s)
char *s;
{
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fprintf(stderr, "%s\n", s);

} /* end yyerror */
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C Fortran parser driver

program parser

parameter (nodes=80000)

parameter (elements=80000)

integer numberNodes, numberElements

real x(nodes), y(nodes), z(nodes)

integer nodel(elements), node2(elements), node3(elements)

common /meshdata/ numberNodes, numberElements, x, y, z, nodel,
& node2, node3

call readmesh()

end
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D Miscellaneous code definitions

/*

File: parser.h

Description:
This file defines the length of a line and also the
structure the data will be stored in. This structure
must match the one defined in the common block in the
Fortran driver code.

*/

#define MAX_LINE_LENGTH 80
#define NUM_NODES 80000
#define NUM_ELEMENTS 80000

typedef struct {
int numberNodes;
int numberElements;
float x[NUM_NODES];
float yINUM_NODES];
float z[NUM_NODES];
int nodei [NUM_ELEMENTS];
int node2[NUM_ELEMENTS];
int node3[NUM_ELEMENTS];
} MeshStruct;

22




NO. OF
COPIES

ORGANIZATION

DEFENSE TECHNICAL INFO CTR
ATTN DTIC DDA

8725 JOHN J KINGMAN RD

STE 0944

FT BELVOIR VA 22060-6218

DIRECTOR

US ARMY RESEARCH LAB
ATTN AMSRL OP SD TA
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR

US ARMY RESEARCH LAB
ATTN AMSRL OP SD TL
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR

US ARMY RESEARCH LAB
ATTN AMSRL OP SD TP
2800 POWDER MILL RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

DIR USARL
ATTN AMSRL OP AP L (305)

23




NO. OF
COPIES

NO. OF
COPIES

ORGANIZATION 36

2

UNIVERSITY OF MINNESOTA
125 MECHANICAL ENGRG
ATTN PROF KUMAR TAMMA
111 CHURCH STREET SE
MINNEAPOLIS MN 55455

UNIVERSITY OF DELAWARE

MECHANICAL ENGRG DEPT

126 SPENCER LAB

ATTN PROF SURESH ADVANI
NEWARK DE 19716

24

ORGANIZATION

ABERDEEN PROVING GROUND

DIR USARL
ATTN AMSRL SC
W. MERMAGEN
R. LODER
N. BOYER
AMSRL SC C
C. NIETUBICZ
AMSRL SC CC
P. DYKSTRA
J. GROSH
T. KENDALL
C. ZOLTANI
AMSRL SC CN
D. TOWSON
AMSRL SC S
A. MARK
M. BIEGA
B. BODT
M. TAYLOR
AMSRL SC SM
R. MOHAN
D. SHIRES
AMSRL SC S8
V. TO
C. HANSEN
E. HEILMAN
T. PURNELL
K. SMITH
M. THOMAS
AMSRL SC SA
-J. WALL
AMSRL SC A
R. ROSEN
AMSRL SC 1
E. BAUR
J. GANTT
M. HIRSCHBERG
AMSRL SC II
J. DUMER
R. HELFMAN
AMSRL IS TP
B. BROOME
S. CHAMBERLAIN
B. COOPER
A. DOWNS
D. GWYN
G. HARTWIG
M. MARKOWSKI




USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number _ ARL-TR-974 Date of Report _March 1996

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report
will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to
organization, technical content, format, etc.)

Organization

CURRENT Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the
Old or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)




